• Biogeochemical Consequences of Nonvertical Methane Transport in Sediment Offshore Northwestern Svalbard 

      Treude, Tina; Krause, Stefan; Steinle, Lea; Burwicz, Ewa B.; Hamdan, L.J.; Niemann, Helge; Feseker, Tomas; Liebetrau, Volker; Krastel, Sebastian; Berndt, Christian (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-03-21)
      A site at the gas hydrate stability limit was investigated offshore northwestern Svalbard to study methane transport in sediment. The site was characterized by chemosynthetic communities (sulfur bacteria mats, tubeworms) and gas venting. Sediments were sampled with in situ porewater collectors and by gravity coring followed by analyses of porewater constituents, sediment and carbonate geochemistry, ...
    • Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review 

      James, Rachel; Bousquet, Philippe; Bussmann, Ingeborg; Haeckel, Matthias; Kipfer, Rolf; Leifer, Ira; Niemann, Helge; Ostrovsky, Ilia; Piskozub, Jacek; Rehder, Gregor; Treude, Tina; Vielstadte, Lisa; Greinert, Jens (Journal article; Tidsskriftartikkel; Peer reviewed, 2016-05-17)
      Large quantities of methane are stored in hydrates and permafrost within shallow marine sediments in the Arctic Ocean. These reservoirs are highly sensitive to climate warming, but the fate of methane released from sediments is uncertain. Here, we review the principal physical and biogeochemical processes that regulate methane fluxes across the seabed, the fate of this methane in the water column, ...
    • Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters 

      Steinle, Lea; Maltby, Johanna; Treude, Tina; Kock, Annette; Bange, Hermann W.; Engbersen, Nadine; Zopfi, Jakob; Lehmann, Moritz F.; Niemann, Helge (Journal article; Tidsskriftartikkel; Peer reviewed, 2017-03-29)
      Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from which it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter, reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially ...
    • Influence of methane seepage on isotopic signatures in living deep-sea benthic foraminifera, 79° N 

      Melaniuk, Katarzyna; Sztybor, Kamila; Treude, Tina; Sommer, Stefan; Rasmussen, Tine Lander (Journal article; Tidsskriftartikkel; Peer reviewed, 2022-01-21)
      Fossil benthic foraminifera are used to trace past methane release linked to climate change. However, it is still debated whether isotopic signatures of living foraminifera from methane-charged sediments refect incorporation of methane-derived carbon. A deeper understanding of isotopic signatures of living benthic foraminifera from methane-rich environments will help to improve reconstructions of ...
    • Life on the edge: Active microbial communities in the Kryos MgCl2-brine basin at very low water activity 

      Steinle, Lea; Knittel, Katrin; Felber, Nicole; Casalino, Claudia; de Lange, Gert; Tessarolo, Chiara; Stadnitskaia, Alina; Sinninghe Damsté, Jaap S.; Zopfi, Jakob; Lehmann, Moritz F.; Treude, Tina (Journal article; Tidsskriftartikkel; Peer reviewed, 2018-04-17)
      The Kryos Basin is a deep-sea hypersaline anoxic basin (DHAB) located in the Eastern Mediterranean Sea (34.98°N 22.04°E). It is filled with brine of re-dissolved Messinian evaporites and is nearly saturated with MgCl<sub>2</sub>-equivalents, which makes this habitat extremely challenging for life. The strong density difference between the anoxic brine and the overlying oxic Mediterranean seawater ...
    • Response of benthic foraminifera to environmental successions of cold seeps from Vestnesa Ridge, Svalbard: Implications for interpretations of paleo-seepage environments 

      Melaniuk, Katarzyna; Sztybor, Kamila; Treude, Tina; Sommer, Stefan; Zajaczkowski, Marek; Rasmussen, Tine Lander (Journal article; Tidsskriftartikkel; Peer reviewed, 2022-09-15)
      This paper presents the results of a study on the response of living benthic foraminifera to progressing environmental successions in a cold-seep ecosystem. Sediment samples were collected from Vestnesa Ridge (79°N, Fram Strait) at ~1200 m water depth. The distribution of live (Rose Bengal-stained) foraminifera were analyzed in the upper sediment layers in relation to pore water biogeochemical data ...
    • Temporal constraints on hydrate-controlled methane seepage off Svalbard 

      Berndt, Christian; Feseker, Tomas; Treude, Tina; Krastel, Sebastien; Liebetrau, Volker; Niemann, Helge; Bertics, Victoria; Dumke, Ines; Dünnbier, Karolin; Ferré, Benedicte; Graves, Carolyn; Gross, Felix; Hissmann, Karen; Hühnerbach, Veit; Krause, Stefan; Lieser, Kathrin; Schauer, Jürgen; Steinle, Lea (Journal article; Tidsskriftartikkel; Peer reviewed, 2014-01-17)
      Methane hydrate is an icelike substance that is stable at high pressure and low temperature in continental margin sediments. Since the discovery of a large number of gas flares at the landward termination of the gas hydrate stability zone off Svalbard, there has been concern that warming bottom waters have started to dissociate large amounts of gas hydrate and that the resulting methane release may ...
    • Water column methanotrophy controlled by a rapid oceanographic switch 

      Steinle, Lea; Graves, Carolyn A.; Treude, Tina; Ferré, Benedicte; Biastoch, Arne; Bussmann, Ingeborg; Berndt, Christian; Krastel, Sebastian; James, Rachel H.; Behrens, Erik; Böning, Claus W.; Greinert, Jens; Sapart, Célia-Julia; Scheinert, Markus; Sommer, Stefan; Lehmann, Moritz F.; Niemann, Helge (Journal article; Tidsskriftartikkel; Peer reviewed, 2015-04-20)
      Large amounts of the greenhouse gas methane are released from the seabed to the water column, where it may be consumed by aerobic methanotrophic bacteria. The size and activity of methanotrophic communities, which determine the amount of methane consumed in the water column, are thought to be mainly controlled by nutrient and redox dynamics. Here, we report repeated measurements of methanotrophic ...